Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 327: 117970, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38428660

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Solenostemma argel is widely distributed in Africa & Asia with traditional usage in alleviating abdominal colic, aches, & cramps. This plant is rich in phytochemicals, which must be explored for its pharmacological effects. PURPOSE: Peptic Ulcer Disease (PUD) is the digestion of the digestive tube. PUD not only interferes with food digestion & nutrient absorption, damages one of the largest defensive barriers against pathogenic micro-organisms, but also impedes drug absorption & bioavailability, rendering the oral route, the most convenient way, ineffective. Omeprazole, one of the indispensable cost-effective proton-pump inhibitors (PPIs) extensively prescribed to control PUD, is showing growing apprehensions toward multiple drug interactions & side effects. Hence, finding a natural alternative with Omeprazole-like activity & limited side effects is a medical concern. STUDY DESIGN: Therefore, we present Stemmoside C as a new gastroprotective phytochemical agent isolated from Solenostemma argel to be tested in upgrading doses against ethanol-induced gastric ulcers in mice compared to negative, positive, & reference Omeprazole groups. METHODS: We carried out in-depth pharmacological & histopathological studies to determine the possible mechanistic pathway. RESULTS: Our results showed that Stemmoside C protected the stomach against ethanol-induced gastric ulcers parallel to Omeprazole. Furthermore, the mechanistic studies revealed that Stemmoside C produced its effect using an orchestrated array of different mechanisms. Stemmoside C stimulates stomach defense by increasing COX-2, PGE-2, NO, & TFF-1 healing factors, IL-10 anti-inflammatory cytokine, & Nrf-2 & HO-1 anti-oxidant pathways. It also suppresses stomach ulceration by inhibiting leucocyte recruitment, especially neutrophils, leading to subsequent inhibition of NF-κBp65, TNF-α, IL-1ß, & iNOS pro-inflammatory cytokines & JAK-1/STAT-3 inflammation-induced carcinogenicity cascade in addition to MMP-9 responsible for tissue degradation. CONCLUSION: These findings cast light on Stemmoside C's clinical application against gastric ulcer progression, recurrence, & tumorigenicity & concurrently with chemotherapy.


Assuntos
Antiulcerosos , Úlcera Gástrica , Camundongos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Etanol/farmacologia , Citocinas/metabolismo , Mucosa Gástrica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38430357

RESUMO

Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths worldwide. Current treatment strategies include surgical resection, liver transplantation, liver-directed therapy, and systemic therapy. Sorafenib (Sor) is the first systemic drug authorized by the US Food and Drug Administration (FDA) for HCC treatment. Nevertheless, the conventional oral administration of Sor presents several limitations: poor solubility, low bioavailability, drug resistance development, and off-target tissue accumulation, leading to numerous adverse effects. Nano-emulsion, a nano-delivery system, is a viable carrier for poorly water-soluble drugs. It aims to enhance drug bioavailability, target organ accumulation, and reduce off-target tissue exposure, thus improving therapeutic outcomes while minimizing side effects. This study formulated Sor nano-emulsion (Sor NanoEm) using the homogenization technique. The resultant nano-emulsion was characterized by particle size (121.75 ± 12 nm), polydispersity index (PDI; 0.310), zeta potential (-12.33 ± 1.34 mV), viscosity (34,776 ± 3276 CPs), and pH (4.38 ± 0.3). Transmission Electron Microscopy exhibited spherical nano-droplets with no aggregation signs indicating stability. Furthermore, the encapsulation of Sor within the nano-emulsion sustained its release, potentially reducing the frequency of therapeutic doses. Cytotoxicity assessments on the HepG2 cell line revealed that Sor NanoEm had a significantly (P < 0.05) more potent cytotoxic effect compared to Sor suspension. Subsequent tests highlighted superior pharmacokinetic parameters and reduced dosage requirements of Sor NanoEm in mice. It exhibited an enhanced safety profile, particularly in behavior, brain, and liver, compared to its suspended form. These findings underscore the enhanced pharmacological and toxicological attributes of Sor Nano-emulsion, suggesting its potential utility in HCC treatment.

3.
Environ Sci Pollut Res Int ; 30(25): 67771-67787, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37115449

RESUMO

Hexavalent chromium salt, like potassium dichromate (PD), is chromium's most precarious valence state in industrial wastes. Recently, there has been increasing interest in ß-sitosterol (BSS), a bioactive phytosterol, as a dietary supplement. BSS is recommended in treating cardiovascular disorders due to its antioxidant effect. Trimetazidine (TMZ) was used traditionally for cardioprotection. Through the administration of BSS and TMZ, the cardiotoxic effects of PD were to be countered in this study, in addition to examining the precise mechanism of PD-induced cardiotoxicity. Thirty male albino rats were divided into five groups; the control group: administered normal saline daily (3 mL/kg); the PD group: administered normal saline daily (3 mL/kg); BSS group: administered BSS daily (20 mg/kg); TMZ group: administered TMZ daily (15 mg/kg); and the BSS + TMZ group: administered both BSS (20 mg/kg) and TMZ (15 mg/kg) daily. All experimental groups, except the control, received on the 19th day a single dose of PD (30 mg/kg/day, S.C.). Normal saline, BSS, and TMZ were received daily for 21 consecutive days p.o. The exposure to PD promoted different oxidative stresses, pro-inflammatory, and cardiotoxicity biomarkers. BSS or TMZ succeeded solely in reducing these deleterious effects; however, their combination notably returned measured biomarkers close to normal values. The histopathological investigations have supported the biochemical findings. The combination of BSS and TMZ protects against PD cardiotoxicity in rats by reducing oxidative stress and apoptotic and inflammatory biomarkers. It may be promising for alleviating and protecting against PD-induced cardiotoxicity in people at an early stage; however, these findings need further clinical studies to be confirmed. HIGHLIGHTS: • Potassium dichromate induces cardiotoxicity in rats through the upregulation of oxidative stress, proinflammatory, and apoptotic pathways biomarkers. • ß-Sitosterol possesses a possible cardioprotective effect by modulating several signaling pathways. • Trimetazidine, the antianginal agent, has a potential cardioprotective impact on PD-intoxicated rat model. • The combination of ß-Sitosterol and trimetazidine was the best in modulating different pathways involved in PD cardiotoxicity in rats via the interplay between NF-κB/AMPK/mTOR/TLR4 and HO-1/NADPH signaling pathways.


Assuntos
Trimetazidina , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Biomarcadores , Cardiotoxicidade/tratamento farmacológico , NADP/metabolismo , NADP/farmacologia , NF-kappa B/metabolismo , Dicromato de Potássio , Solução Salina/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like , Serina-Treonina Quinases TOR/metabolismo , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Animais , Ratos
4.
Inflammopharmacology ; 31(2): 859-875, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773191

RESUMO

In this study, the anti-inflammatory effects of the methanolic extract (TE) of Plumeria obtusa L. (aerial parts) and its fractions were evaluated in vitro, and active fraction was evaluated in vivo. Among tested extracts, dichloromethane fraction (DCM-F) exhibited the strongest inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 macrophages. The effect of DCM-F on LPS-induced acute lung injury (ALI) in mice was studied. The animals were divided into five groups (n = 7) randomly; Gp I: negative control, GP II: positive control (LPS group), GP III: standard (dexamethasone, 2 mg/kg b.wt), GP IV and V: DCM-F (100 mg/kg), and DEM-F (200 mg/kg), respectively. DCM-F at a dose of 200 mg/kg suppressed the ability of LPS to increase the levels of nitric oxide synthase (iNOS), NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), as measured by ELISA. In addition, the expression of cyclooxygenase-2 (COX-2) was reduced (determined by immunohistochemistry) and the level of malondialdehyde (MDA) was decreased while that of catalase was restored to the normal values. Furthermore, the histopathological scores of inflammation induced by LPS were reduced. Twenty-two compounds were tentatively identified in DCM-F using LC/ESI-QToF with iridoids, phenolic derivatives and flavonoids as major constituents. Identified compounds were subjected to two different molecular docking processes against iNOS and prostaglandin E synthase-1 target receptors. Notably, protoplumericin A and 13-O-coumaroyl plumeride were the most promising members compared to the co-crystallized inhibitor in each case. These findings suggested that DCM-F attenuates the LPS-induced ALI in experimental animals through its anti-inflammatory and antioxidant potential.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , NF-kappa B/metabolismo , Inflamação/metabolismo , Macrófagos , Anti-Inflamatórios/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
5.
Neurotoxicology ; 95: 232-243, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36822375

RESUMO

BACKGROUND: With the recent growth in the applications of silver nanoparticles (Ag-NPs), worries about their harmful effects are increasing. Selenium plays a vital role in the antioxidant defense system as well as free radical scavenging activity. OBJECTIVES: This study aims to inspect the neuroprotective effect of selenium-loaded chitosan nanoparticles (CS-SeNPs) against the adverse impact of Ag-NPs on brain tissue in adult rats. DESIGN: Rats were divided into four groups: group I (control) was administered distilled water (0.5 mL/kg), group II was administered Ag-NPs (100 mg/kg), group III was administered Ag-NPs (100 mg/kg) and CS- SeNPs (0.5 mg/kg) and group IV received only CS- SeNPs (0.5 mg/kg) daily by oral gavage. After 60 days, rats were subjected to behavioral assessment and then euthanized. Brain tissues were obtained for estimation of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-2-deoxy Guanosine (8-OHdG), and Nuclear Factor Erythroid 2 Like Protein 2 (Nrf2). Also, histological examination of the brain and immunohistochemical detection of glial fibrillary acidic protein (GFAP) were investigated RESULTS: exposure to Ag-NPs induced marked neurotoxicity in the brain tissue of rats that was manifested by decreased levels of TAC and Nrf2 with increased levels of MDA and 8-OHdG. Also, various pathological lesions with an increase in the number of GFAP immunoreactive cells were detected. While brain tissue of rats received Ag-NPs plus CS-SeNPs group (III) revealed significantly fewer pathological changes. CONCLUSION: Co-administration of CS-SeNPs significantly ameliorates most of the Ag-NPs-induced brain damage.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanopartículas , Fármacos Neuroprotetores , Selênio , Ratos , Animais , Selênio/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fármacos Neuroprotetores/farmacologia , Quitosana/farmacologia , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
6.
ACS Chem Neurosci ; 14(3): 359-369, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689351

RESUMO

Aluminum oxide nanoparticles (Al2O3 NPs) have been widely used in vaccine manufacture, food additives, human care products, and cosmetics. However, they also have adverse effects on different organs, including the liver, kidneys, and testes. Melatonin is a potent antioxidant, particularly against metals by forming melatonin-metal complexes. The present study aimed to investigate the protective effects of melatonin against Al2O3 NP-induced toxicity in the rat brain. Forty adult male Wistar rats were allocated to four groups: the untreated control (received standard diet and distilled water), Al2O3 NP-treated (received 30 mg/kg body weight Al2O3 NPs), melatonin and Al2O3 NP-treated (received 30 mg/kg body weight Al2O3 NPs + 10 mg/kg body weight melatonin), and melatonin-treated (received 10 mg/kg body weight melatonin) groups. All treatments were by oral gavages and administered daily for 28 days. Afterward, the rats were sacrificed, and samples from various brain regions (cerebrum, cerebellum, and hippocampus) were subjected to biochemical, histopathological, and immunohistochemical analyses. Al2O3 NPs substantially increased malondialdehyde, ß-amyloid 1-42 peptide, acetylcholinesterase, and ß-secretase-1 expression, whereas they markedly decreased glutathione levels. Furthermore, Al2O3 NPs induced severe histopathological alterations, including vacuolation of the neuropil, enlarged pericellular and perivascular spaces, vascular congestion, neuronal degeneration, and pyknosis. Al2O3 NP treatment also resulted in an intense positive caspase-3 immunostaining. Conversely, the administration of melatonin alleviated the adverse effects induced by Al2O3 NPs. Therefore, melatonin can diminish the neurotoxic effects induced by Al2O3 NPs.


Assuntos
Melatonina , Nanopartículas , Humanos , Masculino , Ratos , Animais , Óxido de Alumínio/toxicidade , Ratos Wistar , Melatonina/farmacologia , Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , Peso Corporal , Estresse Oxidativo
7.
Arch Pharm (Weinheim) ; 355(6): e2100327, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35285986

RESUMO

Two new series of coumarin and benzofuran derivatives were designed, synthesized, and assessed for their in vitro and in vivo antitumor activities against breast cancer. Compounds 8, 9, 14, 15, and 17 exhibited the best antiproliferative activities (IC50 : 0.07-2.94 µM) against the MCF-7 cell line, compared with lapatinib (IC50 : 4.69 µM). Compound 14, with the most potent cytotoxic activity against MCF-7 cells, was capable of enhancing preG1 apoptosis and triggering cell cycle arrest at the G2/M phase. The kinase inhibitory activity of compound 14 against a panel of 22 kinases was examined to reveal multikinase inhibition within -39% to -97%. Furthermore, compound 14 exhibited potent in vivo Ehrlich (mammary adenocarcinoma) tumor regression, positive caspase-3, and negative EGFR immunoreaction, and was capable of elevating the catalase level. The physicochemical properties and pharmacokinetic parameters of compound 14 were investigated in silico for its druglikeness.


Assuntos
Antineoplásicos , Benzofuranos , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Benzofuranos/química , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
8.
Environ Sci Pollut Res Int ; 29(20): 30697-30711, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34994930

RESUMO

Atrazine (ATZ) is herbicide that has been widely used for different crops. This extensive use has resulted in severe deleterious effects in different species. In this work, we investigated the potentially harmful effect of atrazine herbicide on the brain and submandibular salivary gland. Our investigation was carried out on 20 adult male albino rats that were equally divided into two groups. The first group received distilled water as control, while the second group received ATZ at 200 mg/kg body weight/ day via stomach gavage for 30 successive days of the experiment; the oral LD50 for ATZ is 3090 mg/kg. Our findings revealed the ability of ATZ to cause damage to the cerebrum, hippocampus, and submandibular salivary gland. This damage resulted from the induced oxidative stress, which was indicated by a significant elevation in malondialdehyde (MDA) concentration, DNA fragmentation, tumor necrotic factor-alpha (TNF-α) expression, with a significant decrease in reduced glutathione (GSH) level and reduction of B cell lymphoma 2 (BCL2), dopamine receptor D1 (Drd1), cAMP-responsive element-binding protein 1 (Creb1) genes expression after ATZ exposure. Moreover, degeneration of cells, cytoplasmic vacuolation, congestion of blood vessels, a strong immune reaction to caspase 3, and negligible immune expression of a glial fibrillary acidic protein (GFAP) were also noticed in the ATZ-treated group. We concluded that ATZ induces oxidative stress and has a toxic and apoptotic effects on the cerebrum, hippocampus, and salivary gland of adult male albino rats.


Assuntos
Atrazina , Herbicidas , Animais , Atrazina/toxicidade , Encéfalo/metabolismo , Herbicidas/toxicidade , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Ratos
9.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959705

RESUMO

Chemotherapeutic-related toxicity exacerbates the increasing death rate among cancer patients, necessitating greater efforts to find a speedy solution. An in vivo assessment of the protective effect of the C. macrocarpa leaves polar fraction of hydromethanolic extract against doxorubicin (Dox)-induced neurotoxicity was performed. Intriguingly, this fraction ameliorated Dox-induced cognitive dysfunction; reduced serum ROS and brain TNF-α levels, upregulated the brain nerve growth factor (NGF) levels, markedly reduced caspase-3 immunoexpression, and restored the histological architecture of the brain hippocampus. The in vivo study results were corroborated with a UPLC-ESI-MS/MS profiling that revealed the presence of a high percentage of the plant polyphenolics. Molecular modeling of several identified molecules in this fraction demonstrated a strong binding affinity of flavan-3-ol derivatives with TACE enzymes, in agreement with the experimental in vivo neuroprotective activity. In conclusion, the C. macrocarpa leaves polar fraction possesses neuroprotective activity that could have a promising role in ameliorating chemotherapeutic-induced side effects.

10.
Neurotoxicology ; 86: 37-51, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216684

RESUMO

Melamine is a chemical substance used as a food adulterant because of its high nitrogen content; it is known to induce neurotoxicity, thereby adversely affecting the central nervous system. The biocompatibility, bioavailability, lower toxicity, and the large surface area of nanosized selenium relative to its other forms indicate that selenium nanoparticles (SeNPs) have a potential ameliorative effect against melamine-induced neurotoxicity. In this study, we tested this hypothesis using 40 adult male albino rats that were randomly assigned into four groups (n = 10 per group): group I rats served as the untreated negative controls and were fed with standard diet and distilled water; group II rats were orally treated with melamine (300 mg/kg body weight/d); group III rats orally received melamine (300 mg/kg body weight/d) and SeNPs (2 mg/kg body weight/d); and group IV rats received SeNPs only (2 mg/kg body weight/d) for 28 days. Blood and brain samples were collected from all rats and processed for biochemical, histopathological, and immunohistochemical investigations. SeNPs were encapsulated in starch as a natural stabilizer and a size-controlling agent (SeNP@starch). The prepared SeNPs were characterized using different techniques. Inductively coupled plasma-optical emission spectrometry (ICP-OES) indicated that the percentage of selenium loaded in starch was 1.888 %. Powder x-ray diffractometer (XRD) was used to investigate the crystalline structure of the Se-NP@starch, to be tubular and composed of amorphous starch as well as metallic selenium. Thermogravimetric analysis confirmed the thermal stability of the product and determined the interactions among the different components. Transmission electron microscope demonstrated the spherical shape of SeNPs and their dispersion into starch surface as well as evaluating their size in nanoscale (range 20-140 nm). Our results revealed that the melamine- exposed rats had significantly elevated in malondialdehyde levels, significantly reduced in total antioxidant capacity, down-regulated expression of the antioxidant related genes Nrf2 (nuclear factor erythroid 2-related factor 2) and GPx (glutathione peroxidase), as well as up-regulated expression of the apoptosis-related gene Bax (B-cell lymphoma 2-associated X protein), with down regulation of Bcl-2 (B-cell lymphoma 2). Histopathological examination exhibited several alterations in the cerebrum, cerebellum, and hippocampus of the treated rats compared with the controls. Neuronal degeneration, vacuolation of the neuropils, and pericellular and perivascular spaces were observed. In addition, the pyramidal and granular cell layers of the hippocampus and cerebellum, respectively, were found to have significantly reduced thickness. Furthermore, a significant decrease in the percentage area of the glial fibrillary acidic protein and a significant increase in the percentage area of caspase-3 were noted. On the other hand, co-treatment with SeNPs partially ameliorated these alterations. A significant reduction in malondialdehyde levels; a non- significant elevation in total antioxidant capacity; up-regulation, upregulation of Nrf2, GPx, and Bcl-2 and downregulation of Bax were recorded. Neuronal degeneration, vacuolation of neuropils, and pericellular spaces were reduced. The pyramidal and granular cell layers restored their normal thickness. The percentage area of the glial fibrillary acidic protein significantly increased, whereas that of caspase-3 significantly decreased. In conclusion, SeNPs have an ameliorative effect against melamine-induced neurotoxicity in albino rats.


Assuntos
Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem , Triazinas/toxicidade , Fatores Etários , Animais , Antioxidantes/química , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Nanopartículas/química , Estresse Oxidativo/fisiologia , Ratos , Selênio/química
11.
Tissue Cell ; 66: 101391, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32933714

RESUMO

Monosodium glutamate (MSG) is a major taste enhancer that is used as a food additive. Vitamin C (Vit C) and Nigella sativa oil (NSO) are known for their potent antioxidant activities. OBJECTIVE: This study investigates the adverse effect of MSG on the thyroid gland and cerebellum of adult male albino rats and the protection against MSG-mediated toxicity provided by Vit C and NSO. DESIGN: Fifty rats were divided into five groups that were treated via oral gavage. Group I (control) rats received distilled water, Group II rats were treated with MSG (6 mg/gm body weight/day), Group III rats were treated with MSG and Vit C (100 mg/kg body weight /day), Group IV rats were treated with MSG and NSO (50 mg/kg body weight two times per week), and Group V rats were treated with MSG together with both Vit C and NSO with MSG. After 60 days of treatment, rats were euthanized and histological sections were prepared from the thyroid gland and the cerebellum for routine staining and immunohistochemical detection of glial fibrillar acidic protein (GFAP), Caspase-3 and proliferating cell nuclear antigen (PCNA), respectively. Cerebellar tissue was also evaluated to determine glutathione (GSH) and malondialdehyde (MDA) levels; GSH was also measured in thyroid tissue. Serum levels of fT3, fT4 and TSH (thyroid stimulating hormone) were also evaluated. RESULTS: Microscopic examination of cerebellar tissues revealed significant cerebellar injury and cellular apoptosis among the rats in Group II. The thyroid glands of Group II rats were notable for degenerating follicles, loss of colloid, sloughed follicular cells and congested blood vessels. The cerebellar and thyroid tissues from rats in treatment Groups III, IV and V revealed significantly less pathology. Cerebellar and thyroid tissues from Group II rats that were treated with MSG alone revealed intense GFAP and caspase-3 (cerebellar) and PCNA (thyroid) immunoreactivity. Furthermore, cerebellar tissues from rats received MSG alone (Group II) were notable for decreased levels of GSH and increased levels of MDA; thyroid tissue from rats in Group II also demonstrated decreased levels of GSH. Likewise, serum fT3 and fT4 levels were significantly decreased, while serum TSH was significantly increased among rats in Group II. Combined administration of Vit C and NSO together with MSG (Group V) revealed some variations in oxidative parameters compared to those in the Group I control rats. CONCLUSIONS: Oral intake of MSG resulted in degenerative changes in neurons and astrocytes in cerebellum and, also degeneration of the thyroid glands of albino rats. Concomitant administration of Vit C and NSO may limit MSG-induced damage to the cerebellum and thyroid glands and thereby provide significant protection against the oxidative damage induced by MSG.


Assuntos
Ácido Ascórbico/farmacologia , Cerebelo/patologia , Óleos de Plantas/farmacologia , Glutamato de Sódio/toxicidade , Glândula Tireoide/patologia , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Imuno-Histoquímica , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Tiroxina/sangue , Tri-Iodotironina/sangue
12.
Acta Histochem ; 121(5): 563-574, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31072619

RESUMO

The accidental spilling of petroleum oils into natural water resources expose fishes in the effluent area to serious problems.. Oreochromis niloticus were used in the current study as a model to investigate the toxicity of used engine oil and to evaluate the protective role of vitamin C against this toxicity. The oil concentration used in this study was previously determined to be 0.25 ml/l by 96 h-LC50. After 21 days of engine oil exposure, haematological and biochemical analyses revealed significant reduction in RBCs counts, haemoglobin concentrations and total proteins. However, ALT, AST and glucose levels were significantly increased by the end of the experiment indicating the damaging effects of the oil on fish tissues. Oxidative stress biomarkers were also measured; liver CAT activity was significantly decreased in the oil exposed group compared to control group, while MDA levels were significantly elevated. Histopathological examination showed the presence of several alterations in hepatic and branchial tissues in exposed group compared to the control group. Significant elevations in CYP1 A1 mRNA expression levels in hepatic tissue were also detected in the group exposed to used engine oil compared to the control group. However, supplementation of fishexposed to used engine oil with vitamin Csignificantly enhance the biochemical, oxidative and histological parameters.


Assuntos
Ácido Ascórbico/farmacologia , Ciclídeos , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Petróleo/toxicidade , Animais , Análise Química do Sangue , Ciclídeos/sangue , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Brânquias/patologia , Brânquias/ultraestrutura , Nível de Saúde , Histocitoquímica , Fígado/patologia , Fígado/ultraestrutura , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos
13.
Environ Sci Pollut Res Int ; 26(10): 9574-9584, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30726541

RESUMO

Tartrazine is one of the most widely used food additives. The present investigation was carried out on 40 adult male albino rats. They were divided into four groups of ten animals for each. Group I was considered as a control group. Group II was treated with tartrazine daily in a dose 7.5 mg/kg body weight by oral gavage for 30 days. Group III was received 15 mg/kg body weight of tartrazine for the same period. Group IV was administered tartrazine in a dose 100 mg/kg body weight for the whole duration of the experiment. At the end of experiment, samples from the cerebellum, submandibular salivary glands, and kidneys were fixed in neutral buffered formalin 10% and prepared routinely for paraffin sectioning and staining for histopathological and immunohistochemical investigations of proliferating cell nuclear antigen "PCNA" and glial fibrillar acidic protein "GFAP". Tartrazine-treated groups revealed histopathological degenerative changes in the obtained organs. In group II, the cerebellum showed subcortical edema, congestion of the blood vessels, cytoplasmic vacuolations, and pyknosis of the nuclei in the gray matter neurons. Concerning the submandibular glands, they expressed cytoplasmic vacuolations and pyknosis of the nuclei of the acinar cells, congestion of the interacinar blood capillaries, and degenerative changes in the striated duct. The kidneys appeared with interstitial hemorrhage and dilatation of the glomerular capillaries. The PCT and DCT showed ill-defined cell boundaries. The collecting tubules in the renal medulla appeared with flattened epithelial cells. The severity of these changes increases by increasing the dose of tartrazine in group III and reach to the highest level in group IV. The immunoexpression of the GFAP in the cerebellum of the experimental groups was intense compared to the control group. The immunoreactivity of PCNA in the nuclei of the acinar and ductal cells of the submandibular gland and the cells of the renal cortex and medulla was strong in the tartrazine-treated groups compared to the control group. The current study concluded that the tartrazine had serious effect on the cerebellum, submandibular glands, and kidneys that adversely affect the functions of these organs.


Assuntos
Corantes/toxicidade , Tartrazina/toxicidade , Animais , Cerebelo/efeitos dos fármacos , Células Epiteliais , Rim/efeitos dos fármacos , Masculino , Ratos , Glândula Submandibular/efeitos dos fármacos , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA